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Abstract
Biodegradable polymers have been widely used in biomedical applications because of their known

biocompatibility and biodegradability. Biodegradable polymers could be classified into synthetic and

natural (biologically derived) polymers. Both synthetic and natural biodegradable polymers have been

used for drug delivery, and some of them have been successfully developed for clinical applications. This

entry focused on various biodegradable polymers that have been used in development of drug delivery

systems. Advances in organic chemistry and nano/micro fabrication/manufacturing methods enable con-

tinuous progresses in better utilization of a wide range of novel biodegradable polymers in drug delivery.

INTRODUCTION

Over the past few decades, a large number of polymers

have been developed for application as drug delivery sys-

tems. In particular, biodegradable polymers with good bio-

compatibility have become increasingly important in the

development of drug delivery systems.[1] There are many

different types of biodegradable polymers that can be uti-

lized to develop efficient drug delivery systems. Those bio-

degradable polymers might be classified into natural and

synthetic polymers as listed in Table 1. Biodegradation of

polymers involves enzymatic or hydrolytic cleavage of sen-

sitive bonds in the polymer leading to polymer erosion.[2,3]

While most of the natural biodegradable polymers undergo

enzymatic degradation, synthetic polymers generally un-

dergo hydrolytic degradation.

There are many useful natural biodegradable polymers

such as protein-based polymers (e.g., collagen, gelatin,

and fibrin), polysaccharides (e.g., chitosan, alginate, hya-

luronic acid, and dextran), and microbial polymers (e.g.,

polyhydroxybutyrate). The use of natural biodegradable

polymers remains attractive primarily because of good

biocompatibility, easy availability, abundance in nature,

and easy chemical modifications. However, due to their

poor mechanical properties and possibility of an antigenic

response, natural biodegradable polymers need to be pur-

ified or modified for drug delivery applications.[4]

There are a lot of synthetic biodegradable polymers,

such as polyesters [e.g., polylactic acid (PLA), polyglycolic

acid (PGA), polycaprolactone, and poly(lactic-co-glycolic)
acid (PLGA)], polyanhydrides, polyphosphazenes, poly-

orthoesters, and polyalkylcyanoacrylates. Synthetic biode-

gradable polymers are generally biologically inert, and

they have no danger of immunogenicity or possibility of

disease transmission. In addition, characteristics of synthetic

biodegradable polymers such as mechanical properties,

degradability, and adhesiveness can be altered to facilitate

clinical use.[5]

POLYPEPTIDES AND PROTEINS

Collagen. Collagen is a main protein that is found in

connective tissues such as skin, bones, and tendon. Colla-

gen consists in more than 90% of the extracellular protein

in the tendon and bone, and more than 50% in the skin.[6]

Twenty-eight types of collagen protein have been de-

scribed in literature to date.[7] Collagen is mainly isolated

from animal sources, so one concern has been raised

about safety of animal tissue-derived collagen.[8] To de-

crease the potential immunogenicity of animal tissue-

derived collagen, atelocollagen has been used in drug

delivery systems.[9,10] Atelocollagen produced by remov-

ing telopeptides, the major cause of foreign body re-

sponse, from natural collagen molecules, resulting in

reduction of antigenicity. Collagen is defined by good

mechanical properties, good biocompatibility, low antige-

nicity, moldability, and easy modification. Therefore, col-

lagen has been widely applied in drug delivery systems

and tissue engineering.[11] The majority of collagen-based

drug delivery systems are in the form of either implant-

able devices or injectable hydrogels.[12] The relevant

applications of collagen in drug delivery systems are sum-

marized in Table 2. Because of its unique structural prop-

erties, collagen has been fabricated into a wide variety of

forms such as cross-linked sponges, meshes, injectable

hydrogel, and particles in order to fully exploit the poten-

tial of collagen for drug delivery systems.[11]

Gelatin. Gelatin is a natural polymer that is obtained by

the denaturation process of collagen[13] and is commonly
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used for pharmaceutical and biomedical applications

because of its biodegradability and biocompatibility in

physiological environments.[13,14] Two different types of

gelatin can be produced from collagen depending on the

pretreatment method, prior to the extraction.[13,14] The

alkaline process, through hydrolysis of amide groups of

asparagine and glutamine, yields gelatin with a great pro-

portion of carboxyl groups. In contrast, acidic pretreat-

ment does little to affect the amide groups of collagen. As

a result, alkaline-processed gelatin possesses negative

charge and low isoelectric point (IEP, 5), while acid-

processed gelatin possesses positive charge and high IEP

(9), which is similar to collagen.[13–15]The different types

of gelatin, negatively charged acidic gelatin or positively

charged basic gelatin, allows for flexibility in terms of

enabling polyion complexation of a gelatin with either

basic protein or acidic protein. Basic gelatin with an IEP

of 9.0 should be applicable as a carrier for acidic proteins,

while basic gelatin with an IEP of 5.0 should be used for

delivery of acidic proteins.[13] The main limitation of gel-

atin, as a drug delivery carrier, arises from its rapidly

dissolving in aqueous environments leading to fast drug

release at body temperature.[16] To overcome this prob-

lem, gelatin has been utilized by insoluble hydrogels

through chemical cross-linking with water-soluble carbo-

diimides[17] or glutaraldehyde.[18] The relevant applica-

tions of gelatin in drug delivery system are summarized

in Table 3. Because of its electrical and physical proper-

ties, gelatin has been fabricated into a wide variety of

forms such as injectable microsphere, injectable hydrogel,

and cross-linked sponge, in order to fully exploit the pot-

ential of gelatin for a drug delivery system.

Fibrin. Fibrin is a protein matrix produced from fibrino-

gen via cleavage by thrombin[19] and a major component

of blood clots and plays a vital role in the subsequent

wound healing response.[20] Unlike xenogenic gelatin

and collagen, which may induce inflammatory and im-

mune responses, fibrin can avoid the potential risk of a

foreign body reaction when produced from patient’s own

blood.[21] Fibrin gel is formed when fibrinogen is acti-

vated by thrombin in the presence of Ca2þ ion and factor

XIII. As a drug delivery carrier, fibrin could be implanted

easily by injection through syringe, which could obviate

invasive open surgery for treatment and reduce patients’

pain.[22] The representative applications of fibrin in drug

delivery system are summarized in Table 4. Due to fibrin’s

biochemical characteristics, mainly in cellular interac-

tions, fibrin-based materials also found applications in

the field of drug delivery with special focus in cell deliv-

ery, such as BMP-2 and human osteoblast,[23] bFGF and

Table 2 Application of collagen for drug delivery system in

biomedical engineering

Application

form

Delivered

biomolecule

Application

area Reference

Sponge BMP-2 Bone

regeneration

[135]

Injectable

hydrogel

BMP-2 gene Bone/cartilage

regeneration

[136]

Collagen/PLLA bFGF Cartilage

regeneration

[137]

Hydrogel bFGF gene Angiogenesis [138]

Collagen/

Heparan sulfate

bFGF Angiogenesis [139]

Injectable

hydrogel

VEGF Angiogenesis [140]

Sponge Antibiotic Infection [141]

Particle Cyclosporine Allograft

implantation

[142]

Sponge TGF-b Wound healing [143]

Table 1 Representative list of biodegradable polymers used in

drug delivery

Classification Polymers

Natural biodegradable polymers
Polypeptides and proteins Collagen, gelatin, fibrin, serum

albumin

Polysaccharides Chitosan, alginate, hyaluronic

acid, agarose, dextran

Microbial polymers Poly(3-hydroxybutyrate)

Synthetic biodegradable polymers
Aliphatic polyesters Poly(lactic acid), Poly(glycolic

acid), Poly(e-caprolactone),
Polydioxanones, Poly(lactic-co-
glycolic acid)

Polyanhydrides Poly(adipic anhydride), Poly

(sebacic anhydride)

Phosphorous-based

polymers

Polyphosphazens,

polyphosphates,

polyphosphonates

Polyorthoesters Poly(ortho ester)I, II, III, and

IV

Polycyanoacrylates Polyalkylcyanoacrylate

Table 3 Application of gelatin for drug delivery system in

biomedical engineering

Application

form

Delivered

biomolecule

Application

area References

Sponge BMP-2 Cartilage

regeneration

[144–146]

Hydrogel TGF-b1 Bone

regeneration

[147–150]

Hydrogel BMP-2 Bone

regeneration

[151–153]

Microsphere bFGF Angiogenesis [154]

Hydrogel VEGF Angiogenesis [155]

Styrenated

microsphere

bFGF/Insulin/

IGF

Adipogenesis [156]

Injectable

hydrogel

TGF-b1 Cartilage

regeneration

[157]
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human bone marrow-derived cell,[24] TGF-b1 and human

fibroblast,[20] and NT-3 and ganglia cell.[25,26] These com-

bined deliveries enhance the therapeutic efficacy of drug

delivery.

POLYSACCHARIDES

Chitosan. Chitosan is a biodegradable and biocompatible

polysaccharide obtained from deacetylation of chitin com-

prising b-(1,4)-linked N-acetyl-glucosamine.[27] Chitin is a

natural polysaccharide found in the exoskeletons of insects

and shells of crustaceans.[15,27] Chitosan has been used in a

wide variety of biomedical applications since it has been

proved to be biodegradable, biocompatible, and non-

toxic.[28] Due to these favorable properties, the interest in

chitosan as a carrier for drug delivery has increased in

recent years.[29] The relevant applications of chitosan-based

materials in drug delivery systems are summarized in Ta-

ble 5. Chitosan and chitosan derivatives can easily form

micro/nanoparticles. Therefore, chitosan micro/nanoparti-

cles are being investigated as delivery systems for plasmid

DNA in nonviral gene therapy.[30] Because it could open

epithelial tight junctions to allow for an increased drug

transport, chitosan has also been investigated as mucoadhe-

sive natural polymer, as a permeation enhancer for drug

delivery at mucosal epithelia.[31,32] Chitosan and chitosan

derivatives are used as coating materials in drug delivery

applications because of their good film-forming properties.

Chitosan-coated microparticles have many advantages such

as bioadhesive property, targeting property to specific tis-

sue, and prolonged drug release properties compared to

uncoated microparticles.[27]

Alginate. Alginate is one of the most versatile biopoly-

mers with a wide range of pharmaceutical and biomedical

applications such as tissue engineering and drug delivery

field. Alginate is a linear unbranched polysaccharide that

contains the repeating units of 1,4-linked b-D-mannuronic

acid and a-L-guluronic acid.[33] Commercial alginates

are isolated from three species of brown algae, such as

Laminaria hyperborean, Ascophyllum nodosum, and

Macrocystis pyrifera.[33] Bacterial alginates have also

been extracted from Azotobacter vinelandii and Pesudo-
monas species.[15,34] Alginates have reversible gelling

properties in aqueous solutions related to the interactions

between the divalent cations, such as calcium, lead, and

copper and carboxylic acid moieties.[35] Due to these

properties of alginate hydrogel, many researches have

been focused on the delivery of protein drugs, cell encap-

sulation, and tissue regeneration,[35] as summarized in

Table 6. It is also possible to form an alginate hydrogel

by lowering the environmental pH. Active biomolecules

released from alginate hydrogel in low pH solutions is

significantly reduced which could be advantageous in the

development of drug delivery system. Theoretically, algi-

nate shrinks in gastric environment and the encapsulated

drugs cannot be released at low pH.[36] However, alginate

undergoes a rapid dissolution at higher pH, which may

result in burst release of active biomolecules. Therefore,

chemical modification of alginate is needed for the sus-

tained release of active biomolecules.[37]

Hyaluronic acid. Hyaluronic acid is a linear unsulfated gly-
cosaminoglycan that consists of repeating disaccharide units

of a-1,4-D-glucuronic acid and b-1,3-N-acetylglucosamine

linked a-(1!4) and b-(1!3) respectively.[38] Hyaluronic

acid is mainly found in the extracellular matrix of connec-

tive tissues such as cartilage, umbilical cord, vitreous of eye,

and synovial fluid.[39,40] Hyaluronic acid is commercially

obtained from rooster comb, synovial fluid, or umbilical

Table 4 Application of fibrin for drug delivery system in

biomedical engineering

Application

form

Delivered

biomolecule

Application

area References

Fibrin gel bFGF Angiogenesis [22,24,158]

Fibrin gel VEGF Angiogenesis [159–162]

Fibrin gel BMP-2 Bone

regeneration

[163]

Fibrin/heparin-

conjugated

nanospheres

bFGF/BMP-2 Angiogenesis/

bone

regeneration

[84,164]

Fibrin–

alginate–

hydroxyapatite

bead

bFGF, TGF-b1 Bone

regeneration

[165]

Fibrin gel NGF Nerve

regeneration

[166]

Fibrin gel ENOS gene Wound

healing

[167]

Table 5 Application of chitosan-based materials for drug

delivery system in biomedical engineering

Application form

Delivered

molecule

Application

area Reference

Microspheres in

chitosan scaffold

TGF-b1 Cartilage

regeneration

[168]

Nanofibrous membrane BMP-2 Bone

regeneration

[169]

Photocrosslinkable

hydrogel

bFGF Angiogenesis [170]

Chitosan/chitin tube

with PLGA

microparticles

EGF Nerve

regeneration

[171]

Galactosylated

chitosan-graft-

polyethyleneimine

pDNA Gene therapy [172]

Microparticles PEDF

plasmid

Bone

regeneration

[173]

pH sensitive N-succinyl
chitosan/alginate

hydrogel bead

Nifedipine Treatment of

hypertension

[174]
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cord. Besides vertebrates, hyaluronic acid is produced in

large scale from Streptococci, avoiding the risk of animal-

derived pathogens.[40] It has a high capacity for lubrication,

water sorption and retention, and a number of macro-

molecular functions.[38,41] These properties have allowed

hyaluronic acid to be applied in ophthalmic surgery as a

viscoelastic material[42] and in orthopedic surgery for treat-

ment of articular cartilage defects.[43] Hyaluronic acid also

plays a critical role as a signaling molecule in cell motil-

ity,[44] cell differentiation,[45] wound healing,[46] and cancer

metastasis.[47] Recently, hyaluronic acid has been widely

studied as a biocompatible and biodegradable carrier for drug

delivery. The most relevant applications of hyaluronic acid in

drug delivery are summarized in Table 7. As poor mechani-

cal properties and rapid degradation of hyaluronic acid limit

broader ranges of drug delivery systems, hyaluronic acid can

be chemically modified or cross-linked to improve the

mechanical properties and control the degradation rate.[41]

Chemical modification of hyaluronic acid typically involves

the carboxylic acid groups and/or the alcohol groups of its

backbone. The carboxylic acid or alcohol groups have been

modified by esterification[48] and by cross-linking with

dihydrazide,[49] dialdehyde,[50] divinyl sulfone,[51] diglycidyl

ethers,[52] or disulfide[53] cross-linkers.

Dextran. Dextran is a branched, high molecular weight

glucose polymer, produced by bacteria from sucrose or

by chemical synthesis.[54] Dextran consists of a substan-

tial number of consecutive a-(1!6) linkages in its main

chains with some degree of branching via a-(1!3) lin-

kages. Because dextran is readily available in a wide

range of molecular weight and it is biodegradable and

biocompatible,[15] dextran has been clinically used for

more than 50 years for plasma volume expansion and

peripheral flow promotion.[54] Recently, dextran has been

actively investigated for sustained delivery of drugs and

proteins as a potential carrier, in particular for injectable

hydrogel and colon-specific drug delivery systems.[54]

Dextran contains a large number of hydroxyl groups which

can be easily modified by chemical reactions. Dextran,

which contains double bond in the side chain, has been

widely investigated because the photocrosslinking reactions

allows the avoidance of the usual disadvantages of the

chemically cross-linked hydrogel.[35,55,56] The release rate

of drug from hydrogel is controlled by varying the cross-

linking density of the network.[56] Dextran microspheres

were also investigated for the potential delivery of drugs.

The bioavailability of protein drug is improved in vivo due

to the prolonged circulation time in the cavity, compared to

the solution form.[57] Another interesting system is the exp-

loding microgel.[58] Hydroxyethyl methacrylated dextran

microspheres, which is called exploding microgel, have

been used for pulsed drug delivery of protein and plasmid

DNA.[58] Additionally, dextran-conjugated small molecule

drugs and dextran–protein conjugates have also been stud-

ied to prolong the activity of drugs in vivo.[59–61]

MICROBIAL POLYMER

Polyhydroxyalkanoates. Polyhydroxyalkanoates comprise

a special group of polyesters that are synthesized by

many bacteria as an intracellular carbon and energy

compound, as a part of their survival mechanism.[62] The

first polyhydroxyalkanoate, poly(3-hydroxybutyrate) was

discovered in Bacillus megaterium by Lemoigne.[63]

Polyhydroxyalkanoates became candidates as drug carriers

Table 6 Application of alginate for drug delivery system in

biomedical engineering

Application form

Delivered

biomolecule

Application

area References

Beads BMP-2,

TGF-b, or
bFGF

Cartilage

regeneration

[177–177]

RGD-modified

hydrogel

BMP-2,

TGF-b3
Bone

regeneration

[178]

Beads bFGF,

VEGF, EGF

Angiogenesis [179]

Hydrogel VEGF,

bFGF

Angiogenesis [180]

Hydrogel BMP-2 gene Cartilage

regeneration

[136]

Hydroxyapatite/

collagen–alginate

nanocomposites

BMP-2 Bone

regeneration

[181]

Alginate/chitosan

nanoparticle

Insulin Oral delivery

for diabetes

[182]

Table 7 Hyaluronic acid-based carriers for drug delivery

system in biomedical applications

Application form

Delivered

molecule

Application

area Reference

Hyaluronic acid–

heparin conjugate

hydrogel

bFGF Angiogenesis [183]

Hyaluronic acid–PCL

scaffold

BMP-2 Bone

regeneration

[184]

Gelatin–hyaluronic

acid–chondroitin

sulfate copolymer

TGF-b1 Cartilage

regeneration

[185]

Hyaluronic acid-

modified liposome

EGF Wound

healing

[186]

Hyaluronic acid/

chitosan

microparticles

Gentamicin Bacterial

infection

[187]

Hyaluronic acid

hydrogel

BMP-2

gene

Bone/cartilage

regeneration

[136]

Microsphere

(HYAFF®)

Calcitonin Vaginal

delivery

(hormone

therapy)

[188]
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because they can be produced from a variety of renewable

resources and they are biodegradable and biocompatible.

Although a number of polyhydroxyalkanoate are pro-

duced, the use of polyhydroxyalkanoates in drug delivery

system has been mainly restricted to poly(3-hydroxybuty-

rate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate).
The brittleness of poly(3-hydroxybutyrate) was improved

by copolymerization with 3-hydroxyvalerate.[64] Poly(3-

hydroxybutyrate-co-3-hydroxyvalerate), which was first

commercialized, is more flexible, less crystalline and a more

readily processable material than poly(3-hydroxybuty-

rate).[15] Microspheres of poly(3-hydroxybutyrate) contain-

ing rifampicin were investigated for their use as a potential

chemoembolizing agent.[65] Poly(3-hydroxybutyrate-co-3-
hydroxyvalerate) microspheres and microcapsules loaded

with tetracycline were also used for the treatment of peri-

odontal diseases.[66]

SYNTHETIC POLYMERS

Polyesters

Polylactic acid. Polylactic acid or polylactide is biode-

gradable, thermoplastic, aliphatic polyester derived from

lactic acid. Lactic acid is produced from the fermentation

of agricultural by-products such as cornstarch or sugar-

canes.[67] It is a chiral molecule with an asymmetric car-

bon atom and exists in two optically active configurations;

D(–)-lactic acid and L(þ)-lactic acid.[68] While poly(L-lactic

acid) (PLLA) and poly(D-lactic acid) (PDLA) are semicr-

ystalline polymers, poly(D,L-lactic acid) (PDLLA) is an

amorphous polymer. Polylactic acid has a high tensile

strength and modulus and hence, has been considered ideal

biomaterials for load-bearing biomedical applications, such

as orthopedic fixation implants (e.g., rod, plate, screw, and

sheet). A wide range of mechanical properties and degra-

dation rates can be achieved varying its molecular weights

and composition in its copolymers.[69] While high molecu-

lar weight of PLA is used for orthopedic as augmentation

devices, low molecular weight of PLA is used for pharma-

ceutical applications, such as a carrier for drug delivery

systems. Polylactic acid undergoes hydrolytic degradation

via the bulk erosion mechanism by the random scission of

the ester bond.[3] It degrades into nontoxic lactic acid which

is a normal human metabolic by-product and is broken

down into water and carbon dioxide.[70] Due to good mec-

hanical properties, biodegradability and biocompatibility, a

large number of investigations have been carried out on

PLA in sustained drug delivery system. The representative

applications of PLA in drug delivery systems are summar-

ized in Table 8.

Polyglycolic acid. Polyglycolic acid or Polyglycolide is

one of the first biodegradable synthetic polymer investi-

gated for biomedical applications. Polyglycolic acid

is simply synthesized by ring-opening polymerization

of the cyclic diester of glycolic acid or glycolide.[71] Poly-

glycolic acid is a highly crystalline polymer and has a

high tensile strength and modulus.[68] Unlike other related

polyesters such as PLA and polycaprolactone, PGA is

insoluble in most organic solvents. Despite its low solu-

bility, PGA was commercially used for the first synthetic

absorbable suture due to its excellent fiber-forming prop-

erties.[3] Nonwoven PGA meshes have been extensively

used as scaffold in tissue engineering due to their excel-

lent biocompatibility and degradability, good mechanical

properties, and cell binding compatibility. However, PGA

has been limited for drug delivery carriers because of its

low solubility and high melting point.

Poly-e-caprolactone. Poly-e-caprolactone (PCL) is biode-

gradable, biocompatible, and semicrystalline polyester

with a low glass transition temperature (approximately –

60�C) and low melting temperature (55–60�C), depending
upon crystallinity of PCL.[3] PCL is soluble in a wide range

of organic solvents, such as dichloromethane, chloroform,

benzene, toluene, cyclohexanone, acetone, and ethyl ace-

tate.[72] PCL is prepared by the ring-opening polymeriza-

tion of the cyclic monomer e-caprolactone. Stannous

octoate and low molecular weight alcohols are usually used

for the polymerization of e-caprolactone as a catalyst and

initiator, respectively.[68] Degradation of PCL is very slow

because of its crystallinity and hydrophobicity. The PCL-

based drug delivery carriers maintain their shape and

weight during the initial phase of the biodegradation pro-

cess, which covers a molecular weight range of 5,000 to

200,000.[72] The second phase of PCL degradation is char-

acterized by a decrease in the rate of chain scission, which

is associated with an increase in crystallinity, and the one

set of weight loss. The chain cleavage of low molecular

weight of PCL produces a fragment small enough to dif-

fuse out of the polymer bulk.[72] Due to slow degradation

PCL, several copolymers containing PCL have been inves-

tigated to control the degradation rate and mechanical

Table 8 The representative applications of PLA in drug

delivery system

Application form

Delivered

molecule

Application

area Reference

Nanoparticles Paclitaxel [189]

Microparticles BMP Bone

regeneration

[190]

Microparticles Nimesulide Inflammatory

disease

[191]

Microparticles Morphine [192]

PLA–PEG/

hydroxyapatite

composite

BMP-2 Bone

regeneration

[193]

PLA/PEG hydrogel CNTF,

BDNF and

NT-3

Spinal cord

injury

[194]

Scaffold VEGF Angiogenesis [195]
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properties. Copolymers of e-caprolactone with lactide have

yielded materials with faster degradation and elastomeric

properties.[72–74] Similarly, copolymers of e-caprolactone
with glycolide resulted in scaffolds that were elastic com-

pared to those made of PGA alone.[75,76] Due to its slow

degradation, high permeability to many drugs, and nontoxi-

city, the PCL is ideally suitable for long-term delivery over

a period of more than 1 year.[72,77] Extensive research is

ongoing to develop various delivery systems in the form of

microspheres, nanospheres, and implants. The representative

applications of PCL in drug delivery systems are summar-

ized in Table 9. PCL also has the ability to form compatible

blends with other polymers, such as PLA,[78] PMMA,[79]

PLGA,[80] and polysaccharides,[81] which provide opportu-

nities to manipulate the drug release rate from carriers.[77]

Poly(lactic-co-glycolic acid). Poly(lactic-co-glycolic
acid) copolymers have been most widely used as carriers

for controlled delivery of macromolecular therapeutics

such as proteins, peptides, genes, vaccines, growth factor,

and antigens, because their mechanical properties and

degradation rate can be precisely controlled by varying

the lactide/glycolide ratio and the molecular weight of the

copolymers.[82] Poly(lactic-co-glycolic acid) copolymers

are easily prepared by polycondensation reactions with

lactic and glycolic acid[83] and by ring-opening polymeri-

zation of lactide and glycolide.[84] Poly(lactic-co-glycolic
acid) copolymers are cleaved to monomeric acids (e.g.,

lactic and glycolic acid) that are eliminated from the body

as carbon dioxide and water.[4] Poly(lactic-co-glycolic
acid) copolymers undergo bulk erosion through simple

hydrolysis of the ester bond linkage and the degradation

rate of PLGA depends on a variety of parameters, such as

molecular weight, the monomer ratio, hydrophilicity, and

the shape and structure of the matrix.[85] In the composi-

tion range of 25–50% of glycolic acid, PLGA copolymers

form amorphous polymers and degrade more rapidly.[3]

The degradation of low molecular weight of PLGA copo-

lymers becomes faster than that of high molecular weight

of PLGA copolymer because of the higher concentration

of carboxylic acid, which accelerate the acid-catalyzed deg-

radation, at the end of PLGA.[77] Poly(lactic-co-glycolic
acid) copolymers are well suited for drug delivery sys-

tems since PLGA can be fabricated into various forms

such as microspheres, nanospheres, films, rods, beads,

pellets, and porous scaffolds by solvent casting, spray

drying, compression molding, solvent evaporation, and

salt reaching.[86,87] The representative applications of

PLGA for drug delivery system in biomedical engineering

are summarized in Table 10. Among all PLGA applica-

tions in drug delivery, the injectable micro/nanospheres

have been extensively investigated as carriers for drug

delivery systems. Micro/nanospheres have some advan-

tages, such as ease of fabrication with good reproducibility,

good biocompatibility, ease of incorporation of various

kinds of drugs, ease of administration, and controllable

drug release behavior.[87] However, due to the bulk erosion

of the PLGA copolymers, it has been difficult to achieve a

zero-order release kinetic from PLGA micro/nanospheres.

Another concern with using PLGA copolymers as a protein

Table 9 The representative applications of PCL in drug

delivery system

Application

form

Delivered

molecule Application area Reference

Microparticles Nifedipine

and

propranolol

HCl

Antihypertensive [196]

Microspheres Cyclosporine Immunosuppression [197]

PCL or PCL/

PLGA

microspheres

NGF Nerve regeneration [198]

Microspheres Insulin Diabetes [199]

Heparin-

conjugated

micelle

bFGF Angiogenesis [200]

Hyaluronic

acid/PCL

scaffold

BMP-2 Bone regeneration [184]

PEG/PCL

nanospheres

Paclitaxel Cancer therapy [201]

PCL nanofiber

mat

Heparin Vascular injury [202]

Table 10 The representative applications of PLGA in drug

delivery system

Application form

Delivered

molecule

Application

area Reference

Microspheres/

millicylinders

BSA/bFGF/

BMP-2

[203]

Microsphere Hepatitis B

vaccine

Immunization [204]

Microspheres-

embedded

hydrogel

TGF-b1 Cartilage

regeneration

[205]

Micro/

nanospheres

Gentamicin [206]

Nanosphere bFGF Angiogenesis [84]

Nanosphere VEGF gene Angiogenesis [207]

Nano-fibrous

scaffold

BMP-7 Bone

regeneration

[208]

Nanospheres Rapamycin Maturation of

cell

[209]

Microsphere-

based scaffold

IGF-I and

TGF- b1

[210]

Heparin-

conjugated

scaffold

BMP-2 Bone

regeneration

[211]

Discs NGF [212]

Nanospheres Dexamethasone Vascular

injury

[213]
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delivery carrier is the possibility of protein denaturation

within the PLGA micro/nanospheres because of bulk ero-

sion mechanism of the PLGA copolymer and the acidic

degradation of by-products.[3] To overcome the problem

associated with protein denaturation, many efforts have

been made to modify the properties of PLGA copolymers

and blend the PLGA with other polymers, such as alginate

and chitosan,[88] gelatin,[89] poly(vinyl alcohol),[90] and

poly(ortho esters).[91]

Polyanhydrides

Polyanhydrides are one of the useful biodegradable poly-

mers as carriers of drugs to various tissues, such as brain,

bone, blood vessels, and eyes.[92] The main chain of poly-

anhydrides is composed of either aliphatic or aromatic

groups connected by a highly labile anhydride linkage.

Polyanhydrides are hydrolyzed in aqueous solution into

nontoxic dicarboxylic acids that are eliminated from the

body as metabolites,[92] resulting in polymer degradation

and subsequent erosion. Because water does not penetrate

into bulk of hydrophobic polyanhydrides, degradation and

erosion occur at the surface of polyanhydrides rather than

in bulk.[93] The degradation rate of polyanhydrides can be

controlled by varying the length of alkyl chains in poly-

anhydrides such as poly[bis-(p-carboxyphenoxy)alkane

anhydride].[94] The degradation rate can be increased by

incorporating hydrophilic sebacic acid into the polyanhy-

drides such as poly[bis(p-carboxyphenoxy)propane anhy-

dride].[95] Because desirable release kinetics of drug can

be obtained by combining polyanhydrides with different

erosion rates, surface erodible polyanhydrides are particu-

larly well suited for sustained release and drug stabiliza-

tion.[96] Especially, polyanhydride microsphere-based drug

delivery systems have been formulated by hot-melt micro-

encapsulation technique,[97] microencapsulation by solvent

removal,[98] or spray drying.[99] The release rate of inco-

rporated drug was affected by the surface erosion rate of

the polyanhydrides. The incorporated drugs were released

at a near-constant rate for more than 25 days without any

large initial burst, irrespective of the molecular weight of

the polymer and protein loading amount.[100,101] Recently,

the use of polyanhydrides for sustained delivery of DNA

for the potential to enhance long-term gene therapy has

been reported.[102,103]

Polyphosphazenes

Polyphosphazenes are one of the most rapidly developing

classes of biomedical polymers due to their synthetic

flexibility and versatile adaptability for applications.[104]

Polyphosphazenes consist of alternating phosphorus and

nitrogen atoms linked by alternating single and double

bonds with two side groups attached to each phosphorus

atom.[105] Since Allcock et al. synthesized the linear poly-

dichlorophosphazen by ring-opening polymerization,[106]

a large number of polyphosphazenes have been developed

by changing the side groups to obtain biodegradability.[77]

Biodegradable polyphosphazenes are hydrolyzed in aque-

ous solution to nontoxic, low molecular weight products

such as phosphates, ammonia, and corresponding side

groups. A large number of biodegradable polyphospha-

zenes have been investigated as potential carriers for drug

delivery systems including polyphosphazenes containing

amino acid ester,[107] imidazolyl,[108] ethylamino,[109] lactic

or glycolic acid ester,[110] and glucosyl amino groups.[111]

The representative applications of polyphosphazenes are

summarized in Table 11. Most studies using biodegradable

polyphosphazenes have been focused on development of

pellets or films as drug delivery carriers, which are usually

fabricated by solvent casting or compression molding.[104]

In addition, microencapsulation methods, such as emulsion

solvent evaporation and spray drying, are also used for

drug delivery systems.[112,113]

Poly(ortho esters)

Poly(ortho esters) are synthetic bioerodible hydrophobic

polymers which can undergo an erosion process confined

to the polymer–water interface. Poly(ortho esters) were

developed by Heller and coworkers, since the 1970s, and

have been designated as poly(ortho esters) I, poly(ortho

esters) II, poly(ortho esters) III, and poly(ortho esters)

IV.[114] Poly(ortho esters) can be synthesized by the reac-

tion of diols with diketene acetals via a transesterification

reaction. Poly(ortho ester) I has been developed at the

Alza Corporation and is hydrolyzed in an aqueous envi-

ronment, thus producing g-butyrolactone which is rapidly

changed to g-hydroxybutyric acid. To avoid an uncontrol-

lable autocatalytic hydrolysis reaction, the polymer

should be stabilized with a base such as Na2CO3.
[114,115]

Poly(ortho ester) I has been used in the delivery of the

narcotic antagonist naltrexone[114,116], in the delivery of

the steroid levonorgestrel,[117] and in the delivery of indo-

methacin for orthopedic application.[118] However, the

autocatalytic hydrolysis reaction of poly(ortho ester) I

has limited its applications in drug delivery systems.

Table 11 Application of polyphosphazenes for drug delivery

system in biomedical engineering

Application form

Delivered

molecule

Application

area Reference

Micelle Indomethacin Arthritis [214]

Microsphere Insulin Diabetes [112]

Cationic

polyphosphazenes

Plasmid DNA Gene

delivery

[215]

Hydrogel Human growth

hormone

[216]

Microsphere Naproxen Inflammation [113]

Films Colchicine [217]
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Poly(ortho ester) II was developed at the Stanford Re-

search Institute by the addition of a diol to the diketene

acetal. Polymer synthesis is very simple and highly repro-

ducible, and molecular weights can be easily controlled

by adjusting the stoichiometry.[77,114] Because the initial

product of hydrolysis is neutral, the erosion of poly(ortho

ester) II is very slow in an aqueous environment.[119]

Desired erosion rate of polymer can be achieved by addi-

tion of acidic excipient, such as adipic acid or suberic acid,

into the polymer matrix.[120] Poly(ortho ester) II has been

investigated as a carrier for the delivery of 5-fluorouracil

which is used as an antiproliferative agent. The release rate

of 5-fluorouracil from poly(ortho ester) II can be controlled

by varying the amounts of suberic acid.[121] Poly(ortho

ester) III was also developed at the Stanford Research

Institute by reacting triols with two vicinal hydroxyl

groups.[122] Poly(ortho ester) III is a very flexible, viscous,

and gel-like material at room temperature. This viscous

nature of poly(ortho ester) III allows incorporation of ther-

apeutic agents by a simple mixing at room temperature

without the need of using organic solvents or elevated

temperatures.[120] Moreover, the initial hydrolysis of the

poly(ortho ester) III is followed by a much slower hydroly-

sis of the monesters to produce a carboxylic acid and a triol.

Although poly(ortho ester) III offers a number of advan-

tages, its biomedical applications have been limited by dif-

ficulties in synthesis and reproducibility.[114] Poly(ortho

ester) IV was recently developed by Heller et al. using a

triol, 1,1,4-cyclphecanetrimethanol, and trimethyl orthoace-

tate.[123] Poly(ortho ester) IV can be readily prepared by a

well-developed synthesis that has been scaled up under

GMP. Because poly(ortho ester) IV has excellent potential

as a drug delivery carrier, many therapeutic agents includ-

ing proteins, peptides, and DNA have been delivered from

poly(ortho ester) IV. Poly(ortho ester) IV has also potential

for treating ocular diseases, as a viscous, injectable material

or solid, implantable matrix.[120]

Polyalkylcyanoacrylates

Alkylcyanoacrylates have been used in tissue adhesives

such as surgical glue because of their excellent adhesive

properties resulting from the high bond strength with most

polar substrates.[124] Polyalkylcyanoacrylates have also

been used for biomedical applications since the polyalkyl-

cyanoacrylates have been found to be biodegradable and

biocompatible.[125] The degradation rate of polyalkylcya-

noacrylates can be controlled by changing alkyl group

chain lengths.[126] Recently, a phase I clinical trial test for

the polyalkylcyanoacrylate nanoparticles containing doxo-

rubicin was carried out successfully in the treatment

of refractory solid tumors,[127] polyalkylcyanoacrylate

nanoparticles have been extensively studied to deliver anti-

cancer drug or peptides.[128,129] However, polyalkylcya-

noacrylate nanoparticles have a major problem which is

their nonspecific uptake by macrophages after intravenous

administration.[124] To reduce nonspecific uptake, polyalkyl-

cyanoacrylate–polyethylene glycol copolymers or polyeth-

ylene glycol-coated polyalkylcyanoacrylate nanoparticles

have been investigated for drug delivery systems.[130,131]

Polyethylene glycol-coated polyalkylcyanoacrylate nano-

particles result in a lower uptake by macrophages and a

longer circulation time in the blood.[132] Polyalkylcyanoa-

crylate nanoparticles have recently passed a phase II clin-

ical trial and have now reached the status of phase III

clinical trials for resistant cancers.

CONCLUSIONS

Drug delivery systems aim to improve the therapeutic

efficacy of drug using natural and synthetic biodegradable

polymers. We have focused on biodegradable polymers

developed recently for drug delivery systems in this entry.

Most of the biodegradable polymers, such as collagen,

gelatin, PLA, PLGA, etc. are currently on the market.

Future advances in organic chemistry, polymer science,

and biotechnology are enabling the development of a wide

range of novel biodegradable polymers as candidates for

drug delivery carriers. Furthermore, new fabrication and

manufacturing processes, such as nanofabrication[133] and

molecular imprinting,[134] will lead to development of new

drug delivery systems.
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